PMT

(Question		Marking details	Marks Available	
1	(a)		Reasonable attempt at conservation of momentum (1) e.g. $330\ 000m = \pm 10\ 000m + 6.6 \times 10^{-27} \times v_1$ conservation of momentum applied correctly and values substituted (1) e.g. $330\ 000 \times 3.4 \times 10^{-25} = -10\ 000 \times 3.3 \times 10^{-25} + 6.6 \times 10^{-27} \times v_1$ correct answer = 1.75×10^7 [m s ⁻¹] (no ecf) (1)	3	
	(b)	(i)	Any valid answer e.g. impulse (or force or acceleration or change in momentum) is vertical, gamma has no momentum in horizontal direction, perpendicular directions are independent etc. Accept: no horizontal force	1	
		(ii)	Attempt at using $p = \frac{h}{\lambda}$ (1)	4	
			$E = hf$ and $c = f\lambda$ quoted (or equivalent $E = \frac{hc}{\lambda}$) (1)		
			N.B. $p = \frac{E}{c}$ gains 2 marks		
			Correct momentum = 6.33×10^{-22} (1) Answer = $\frac{6.33 \times 10^{-22}}{3.3 \times 10^{-25}}$ [1 920 m s ⁻¹] (1)		
		(iii)	Method i.e. $\sqrt{10000^2 + 2000^2}$ (1)	4	
			Answer = 10 200 [m s ⁻¹] ecf on v from $(b)(ii)$ (1) Method and correct		
			indication of angle e.g. $\tan^{-1}\left(\frac{2000}{10000}\right)(1)$		
			Answer = 11.5° or 0.2 [rad] (or 90-11.5 for other angle if indicated etc.) (1)		
			Question 1 Total	[12]	

Q	uestio	on	Marking details	Marks Available	
2	(<i>a</i>)	(i)	(Number of moles) $n = 4.73$ (1)	3	
			Mass = 4×4.73 or 0.004×4.73 (or implied) (1)		
			Density = $0.004 \times 4.73 / 0.113 = 0.167 $ (1)		
		(ii)	Either $p = \frac{1}{3}\rho \overline{c^2}$ used or equivalent e.g. $\frac{3}{2}nRT = \frac{1}{2}M\overline{c^2}$ (1)	2	
			1 350 [m s ⁻¹] (1)		
	(b)		Density = $0.004 \times 4.73 / 0.212$ or $T = \frac{45000 \times 0.212}{4.73 \times 8.31} \operatorname{ecf}(1)$	3	
			$p = \frac{1}{3}\rho \overline{c^2}$ used or $\frac{3}{2}nRT = \frac{1}{2}M\overline{c^2}$ used or equivalent (1)		
			Answer = $1 230 [m s^{-1}] (1)$		
			Question 2 Total	[8]	
3	(a)		Substitution into $v = \sqrt{\frac{GM}{r}}$ (1)	2	
			Answer = $158\ 000\ [m\ s^{-1}]\ (1)$		
	(b)		Measured velocity is greater (1)	3	
			Which implies that the mass is greater (1)		
			Suggests the existence of dark matter (1)		
			Suggests the existence of dark matter (1)		

[5]

Question 3 Total

(Juestic	on	Marking details	Marks Available	
4	<i>(a)</i>		Mass substituted into $T = 2\pi \sqrt{\frac{m}{k}}(1)$	3	
			$T = \frac{1}{f}$ used or implied (1)		
			Answer = $152 \text{ N m}^{-1} \text{ UNIT mark} (1)$		
	(b)		$3.47 \times 2\pi = 21.803$	1	
	(c)	(i)	$v = \omega A$ [= 1.853] or max PE = max KE (1)	3	
			$KE = \frac{1}{2}mv^2$ used or $= \frac{1}{2}kx^2(1)$		
			Answer = $0.55 [J] (1)$		
		(ii)	Acceleration = $\omega^2 A$ or $F = kA$ Accept $F = kA - mg(1)$	2	
			Answer = $12.9 [N] (1)$		
	(<i>d</i>)		Substitution of values e.g. $-1.4 = 8.5 \sin(21.8 \times 0.1 + \epsilon)$ (1)	3	
			$\sin^{-1}\left(\frac{-1.4}{8.5}\right) = -0.165(1)$		
			$\varepsilon = -2.35$ or equivalent in degree (-135°) or other quadrant (-5.16) ecf on minus sign (1)		
			Question 4 total	[12]	

	Questic	on	Marking details	Marks Available	
5	<i>(a)</i>	(i)	Force per unit mass (this minimalist answer is acceptable unless some contradiction)	1	
		(ii)	Work done per unit mass <u>from infinity</u> (this minimalist answer is acceptable unless some contradiction)	1	
	(b)	(i)	$F = \frac{GMm}{r^2} \text{used (1)}$	2	
			Answer = $22.8 [N] (1)$		
		(ii)	$PE = [-] \frac{GMm}{r}$ used or equivalent (1)	2	
			Answer = $-13.7 \text{ M}[\text{J}](1)$		
	(c)		$PE = [-] \frac{GMm}{r}$ used or equivalent (1)	2	
			Answer = $-61.8 \text{ M}[\text{ J}]$ (ecf on $-\text{sign}$) (1)		
	(<i>d</i>)		Difference in PE attempted (1)	2	
			Correct answer = $48.1 \text{ M}[\text{J}]$ ((b)(ii) – (c)) ecf (1) Answer must be consistent with their signs		
			Question 5 Total	[10]	

	Question	Marking details	Marks Available	
6	(a)	All arrows correct $\checkmark \checkmark$ Directions in line with dotted lines but some (or all) directions inverted \checkmark	2	
	(b)	$E = \frac{Q}{4\pi\varepsilon_0 r^2} \text{used (1)}$ Answer = 1 500 V m ⁻¹ or N C ⁻¹ or equivalent UNIT mark (1)	2	
	(c)	<u>Field of</u> 13 μ C ×2 and ×12/13 (1) Answer = 222 [V m ⁻¹] (1) To the left or implied clearly in the calculation (1)	3	
	(d)	$V = \frac{Q}{4\pi\varepsilon_0 r} \text{used for 3 charges with } r = 12 \text{ or } 13 (1)$ $V = \frac{1}{4\pi\varepsilon_0} \left(2\frac{13}{13} - \frac{24}{12} \right) \text{ as shown or equivalent (cm perfectly valid) (1)}$	2	
	(e)	 Any 3 (×1) from: initial total energy is zero / initial and final PE is zero final total energy is zero / initial and final KE is zero initial force is to the right (has to be linked to the field and the negative charge) later the force is to the left (but not a resistive force) 	3	
		Question 6 Total	[12]	

(Question	Marking details	Marks Available	
7	(a)	$T = 2\pi \sqrt{\frac{(3 \times 10^{10})^3}{6.67 \times 10^{-11} \times (7 \times 10^{29} + 4 \times 10^{28})}}$ (1)	2	
		Answer = 4.65×10^{6} [s] (1) (4.78 × 10 ⁶ s scores 1/2 marks)		
	<i>(b)</i>	$r_1 = \frac{M_1}{M_1 + M_2} d$ used or $M_1 r_1 = M_2 r_2$ used (1)	2	
		Star orbit radius = 0.162×10^{10} [m] (1) (0.171 × 10 ¹⁰ scores 1/2 marks)		
	(c)	$v = \frac{2\pi r}{T}$ or $v = \omega r$ and $\omega = 2\pi f \operatorname{ecf}$ on T and $r(1)$	4	
		$v = \frac{2\pi \times 0.162 \times 10^{10}}{4.65 \times 10^6} [= 2191] (1)$		
		$\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \text{attempted or rearranged ecf on } v (1)$		
		Answer = 4.8×10^{-12} [m] (1)		
	(<i>d</i>)	Hotter or the Earth is cooler or equivalent (1)	2	
		Due to higher intensity [of e-m radiation] (1) Accept because $5^2 > 20$ or similar		
		Question 7 Total	[10]	

(Questio	on	Marking details				Marks Available	
8	(a)	(i)	$T=\frac{1}{2}$	2				
			$T = \frac{q}{2}$	28.9×8.31 (=	312.5 K) (1)			
		(ii)	U =	<i>nRT</i> used or	3/2 pV(1)			2
			AB =	-36 400[J] (1)			
	<i>(b)</i>	(i)	0					1
		(ii)	Valid Acce	2				
			Answ	$ver = -47\ 250$	[J] (1)			
	(c)			AB	BC	CA	ABCA	
			W	0	37.6 kJ	-47.3 k	сJ -9.7 kJ	
			ΔU	-36.4 kJ	33.5 kJ	2.9 k	J O	4
			Q	-36.4 kJ	71.1 kJ	-44.4	kJ -9.7 kJ	
				\checkmark	\checkmark	\checkmark	\checkmark	
				ecf on ΔU	no ecf	ecf on <i>W</i>	ecf on all if $\Delta U \approx 0$ but must make sense	
			Ques	tion 8 Total				[11]