PH4

Question			Marking details	Marks Available
1	(a) (b)		Reasonable attempt at conservation of momentum (1) e.g. $330000 \mathrm{~m}= \pm 10000 \mathrm{~m}+6.6 \times 10^{-27} \times v_{1}$ conservation of momentum applied correctly and values substituted (1) e.g. $330000 \times 3.4 \times 10^{-25}=-10000 \times 3.3 \times 10^{-25}+6.6 \times 10^{-27} \times v_{1}$ correct answer $=1.75 \times 10^{7}\left[\mathrm{~ms} \mathrm{~s}^{-1}\right]($ no ecf) (1)	3
		(i)	Any valid answer e.g. impulse (or force or acceleration or change in momentum) is vertical, gamma has no momentum in horizontal direction, perpendicular directions are independent etc. Accept: no horizontal force	1
		(ii)	Attempt at using $p=\frac{h}{\lambda}$ $E=h f$ and $c=f \lambda$ quoted (or equivalent $E=\frac{h c}{\lambda}$) (1)	4
			N.B. $p=\frac{E}{c}$ gains 2 marks Correct momentum $=6.33 \times 10^{-22}(1)$ $\text { Answer }=\frac{6.33 \times 10^{-22}}{3.3 \times 10^{-25}}\left[1920 \mathrm{~m} \mathrm{~s}^{-1}\right] \text { (1) }$	
		(iii)	Method i.e. $\sqrt{10000^{2}+2000^{2}}(1)$ Answer $=10200\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ ecf on v from (b)(ii) (1)	4
			Method and correct indication of angle e.g. $\tan ^{-1}\left(\frac{2000}{10000}\right)$ (1) Answer $=11.5^{\circ}$ or $0.2[\mathrm{rad}]$ (or 90-11.5 for other angle if indicated etc.) (1)	
			Question 1 Total	[12]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 2 \& (a)

(b) \& (i) \& \begin{tabular}{l}
(Number of moles) $n=4.73$ (1)

Mass $=4 \times 4.73$ or $0.004 \times 4.73($ or implied $)(1)$

Density $=0.004 \times 4.73 / 0.113[=0.167](1)$

Either $p=1 / 3 \rho \overline{c^{2}}$ used or equivalent e.g. $3 / 2 n R T=1 / 2 M \overline{c^{2}}(1)$

$1350\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1)

Density $=0.004 \times 4.73 / 0.212$ or $T=\frac{45000 \times 0.212}{4.73 \times 8.31} \operatorname{ecf}(1)$

$p=1 / 3 \rho \overline{c^{2}}$ used or $3 / 2 n R T=1 / 2 M \overline{c^{2}}$ used or equivalent (1)

Answer $=1230\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)$

Question 2 Total

 \&

3

2

3

[8]
\end{tabular}

\hline 3 \& (a) \& \& | Substitution into $v=\sqrt{\frac{G M}{r}}(1)$ |
| :--- |
| Answer $=158000\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1) |
| Measured velocity is greater (1) |
| Which implies that the mass is greater (1) |
| Suggests the existence of dark matter (1) |
| Question 3 Total | \& | 2 |
| :--- |
| 3 |
| [5] |

\hline
\end{tabular}

Question			Marking details	Marks Available
4	(a)		Mass substituted into $T=2 \pi \sqrt{\frac{m}{k}}(1)$ $T=\frac{1}{f}$ used or implied (1) Answer $=152 \mathrm{~N} \mathrm{~m}^{-1}$ UNIT mark (1)	3
	(b)		$3.47 \times 2 \pi[=21.803]$	1
	(c)	(i)	$\begin{aligned} & v=\omega A[=1.853] \text { or } \max \mathrm{PE}=\max \mathrm{KE}(1) \\ & \mathrm{KE}=1 / 2 m v^{2} \text { used or }=1 / 2 k x^{2}(1) \end{aligned}$	3
		(ii)	Answer $=0.55[\mathrm{~J}]$ (1) Acceleration $=\omega^{2} A$ or $F=k A$ Accept $F=k A-m g$ (1) Answer $=12.9[\mathrm{~N}](1)$	2
	(d)		Substitution of values e.g. $-1.4=8.5 \sin (21.8 \times 0.1+\varepsilon)(1)$ $\sin ^{-1}(-1.4 / 8.5)=-0.165$ $\varepsilon=-2.35$ or equivalent in degree $\left(-135^{\circ}\right)$ or other quadrant (-5.16) ecf on minus sign (1)	3
			Question 4 total	[12]

Question			Marking details	Marks Available
5	(a)	(i)	Force per unit mass (this minimalist answer is acceptable unless some contradiction)	
		(ii)	Work done per unit mass from infinity (this minimalist answer is acceptable unless some contradiction)	1
	(b)	(i)	$F=\frac{G M m}{r^{2}} \quad \text { used (1) }$	2
			Answer $=22.8[\mathrm{~N}]$ (1)	
		(ii)	$P E=[-] \frac{G M m}{r}$ used or equivalent (1)	2
			Answer = - $13.7 \mathrm{M}[\mathrm{J}]$ (1)	
	(c)		$P E=[-] \frac{G M m}{r}$ used or equivalent (1)	2
			Answer $=-61.8 \mathrm{M}[\mathrm{J}] \quad($ ecf on - sign $)(1)$	
	(d)		Difference in PE attempted (1)	2
			Correct answer $=48.1 \mathrm{M}[\mathrm{J}] \quad((b)($ ii $)-(c)) \operatorname{ecf}(1)$ Answer must be consistent with their signs	
			Question 5 Total	[10]

Question		Marking details	Marks Available
6	(a)	All arrows correct $\checkmark \checkmark$ 仡	2
		Directions in line with dotted lines but some (or all) directions inverted \checkmark	
	(b)	$E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \text { used (1) }$	2
		Answer $=1500 \mathrm{Vm}^{-1}$ or NC^{-1} or equivalent UNIT mark (1)	
	(c)	Field of $13 \mu \mathrm{C} \times 2$ and $\times 12 / 13$ (1)	3
		Answer $=222\left[\mathrm{Vm}^{-1}\right](1)$	
		To the left or implied clearly in the calculation (1)	
	(d)	$V=\frac{Q}{4 \pi \varepsilon_{0} r} \quad$ used for 3 charges with $r=12$ or 13 (1)	2
		$V=\frac{1}{4 \pi \varepsilon_{0}}\left(2 \frac{13}{13}-\frac{24}{12}\right)$ as shown or equivalent (cm perfectly valid) (1)	
	(e)	Any 3 ($\times 1$) from:	3
		- initial total energy is zero / initial and final PE is zero - final total energy is zero / initial and final KE is zero - initial force is to the right (has to be linked to the field and the negative charge) - later the force is to the left (but not a resistive force)	
		Question 6 Total	[12]

Question		Marking details	Marks Available
7	(a)	$\begin{equation*} T=2 \pi \sqrt{\frac{\left(3 \times 10^{10}\right)^{3}}{6.67 \times 10^{-11} \times\left(7 \times 10^{29}+\mathbf{4} \times 10^{28}\right)}} \tag{1} \end{equation*}$ Answer $=4.65 \times 10^{6}[\mathrm{~s}](1)$ $\left(4.78 \times 10^{6} \mathrm{~s}\right.$ scores $\left.1 / 2 \mathrm{marks}\right)$	2
	(b)	$r_{1}=\frac{M_{1}}{M_{1}+M_{2}} d \quad$ used or $M_{1} r_{1}=M_{2} r_{2} \quad$ used (1) Star orbit radius $=0.162 \times 10^{10}[\mathrm{~m}](1)\left(0.171 \times 10^{10}\right.$ scores $1 / 2$ marks $)$	2
	(c)	$v=\frac{2 \pi r}{T} \quad$ or $\quad v=\omega r \quad$ and $\quad \omega=2 \pi f$ ecf on T and $r(1)$ $v=\frac{2 \pi \times 0.162 \times 10^{10}}{4.65 \times 10^{6}}[=2191]$ $\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$ attempted or rearranged ecf on $v(1)$ Answer $=4.8 \times 10^{-12}[\mathrm{~m}](1)$	4
	(d)	Hotter or the Earth is cooler or equivalent (1) Due to higher intensity [of e-m radiation] (1) Accept because $5^{2}>20$ or similar	2
		Question 7 Total	[10]

